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Abstract 23 

Cytomegalovirus (CMV) infection leaves lasting effects on the immune system, particularly 24 

shaping T-cell populations. In patients with advanced cancer, persistent CMV exposure may 25 

influence vaccine responses due to immunosuppression from disease progression or prior 26 

therapies. To explore this, we developed CMVision, an open-source ELISpot scoring pipeline that 27 

goes beyond traditional spot-forming unit counts, enabling accurate analysis of complex T-cell 28 

responses, even in wells with overlapping or ambiguous spots. Using CMVision, we assessed SARS-29 

CoV-2 spike-specific responses after mRNA vaccination in patients with cancer with receiving  30 

chemotherapy, immunotherapy or both combined and in cancer-free controls from the VOICE 31 

study. CMV-specific responses remained stable across groups. Notably, individuals with stronger 32 

CMV-reactivity showed enhanced spike-specific responses, suggesting CMV-memory may reflect 33 

immunological “fitness.” These findings position CMVision as a valuable tool and highlight CMV-34 

reactivity as a potential biomarker for vaccine readiness in cancer patients. 35 

Keywords  36 
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Introduction 39 

Chronic viral exposures, such as cytomegalovirus (CMV), may influence how the human immune 40 

system responds to infections and vaccination1,2. CMV is a ubiquitous beta-herpesvirus that 41 

establishes lifelong latency and leads to persistent immune activation and remodeling of the T-42 

cell pool of an individual1. In particular, CMV drives the accumulation of differentiated, oligoclonal 43 

memory T-cell subsets, simultaneously influencing the overall T-cell pool3. While typically 44 

asymptomatic in immunocompetent individuals, CMV’s immunological imprint becomes 45 

increasingly relevant in older adults2,4 and immunocompromised populations5–7, such as patients 46 

with advanced cancers undergoing chemotherapy or immunotherapy. Despite growing 47 

awareness of CMV’s influence on immune homeostasis, its role in modulating immune responses 48 

to novel antigens, such as those introduced via vaccination, remains less understood. 49 

Biologically, the effect of CMV on immune fitness and vaccine responsiveness is nuanced and 50 

context-dependent. Multiple studies have demonstrated that CMV alters the composition and 51 

function of the T-cell compartment, frequently inducing terminal differentiation and the 52 

expansion of effector memory T-cells re-expressing CD45RA (EMRA)8–11. In the elderly, these 53 

changes have been associated with reduced responsiveness to vaccines, particularly those 54 

targeting the influenza virus12. However, the literature presents a complex picture: CMV has been 55 

implicated in both enhancing and suppressing immune responses. Some studies report that CMV 56 

infection can potentiate responses to heterologous antigens, possibly via bystander activation or 57 

stimulation of the innate immune system8, while others describe impaired memory CD4 T-cell 58 

responses to unrelated pathogens9. 59 

A limited but growing number of studies have explored CMV’s impact on immune responses to 60 

SARS-CoV-2 vaccination. Notably, CMV seropositivity has been associated with phenotypic shifts 61 

toward immune senescence and altered NK and T-cell function13; however, it does not appear to 62 

impair SARS-CoV-2-specific antibody production or the durability of vaccine-induced memory 63 

responses14. Another study15, however, observed reduced spike-specific T-cell responses to 64 

vaccination in CMV-seropositive individuals who had not previously encountered SARS-CoV-2, 65 

suggesting that prior SARS-CoV-2 antigenic exposure may mitigate potential CMV-associated 66 
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immunological constraints. These findings underscore the need to move beyond binary 67 

classifications of CMV serostatus and instead consider the magnitude or gradient of CMV-specific 68 

T-cell reactivity as a more informative variable. In one of our previous studies, we examined how 69 

low, medium, and high levels of CMV-specific T-cell responses corresponded to influenza infection 70 

outcomes, but did not observe any significant differences16. Although CMV adds significant 71 

immunological complexity,  few studies have directly examined how differences in CMV-specific 72 

reactivity affect vaccine responsiveness, particularly in vulnerable populations such as patients 73 

with cancer. 74 

This question is especially timely given the increasing use of mRNA vaccines in 75 

immunocompromised populations. Patients with cancer patients, due to therapies and disease-76 

related immunosuppression, often display varied immune responsiveness. Yet, previous work 77 

from the VOICE study has shown that exposure to cancer therapy alone does not uniformly impair 78 

T-cell responses to SARS-CoV-2 vaccination17,18. However, the potential role of chronic viral 79 

infection, especially the magnitude of CMV-specific immunity, as a determinant of vaccine 80 

responsiveness in this group remains understudied. 81 

Accurately quantifying T-cell responses in such heterogeneous populations requires robust and 82 

sensitive analytical tools. The ELISpot assay remains a widely used method for measuring antigen-83 

specific cytokine production at the single-cell level. Conventionally, ELISpot outputs are quantified 84 

by counting discrete spot-forming units (SFUs), a practice that captures broad immune activation 85 

but can miss subtle qualitative differences in T-cell function. Particularly in samples with 86 

overlapping, faint, or morphologically diverse spots (such as those from immunocompromised 87 

individuals) this count-based approach may fail to capture the full spectrum of immune 88 

responses19–21. 89 

Recent computational tools have aimed to improve ELISpot analysis using automated image 90 

processing and machine learning19–21. However, most approaches remain limited to spot 91 

enumeration and do not incorporate additional metrics such as spot intensity, well-level signal, 92 

spatial distribution, or occupancy, features that could more accurately reflect biologically relevant 93 

T-cell activity. This technical gap is particularly problematic in studies requiring high-resolution 94 
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discrimination of immune phenotypes, such as investigations into vaccine responsiveness among 95 

cancer patients with variable CMV exposure histories. To address these analytical and biological 96 

gaps, we developed CMVision, a robust, open-source ELISpot scoring pipeline designed to move 97 

beyond traditional spot count–based quantification. CMVision incorporates multiple metrics, 98 

including spot intensity distributions, well-level occupancy, and spatial patterning, enabling more 99 

nuanced characterization of immune responses even in visually ambiguous wells. We applied 100 

CMVision to analyze spike-specific T-cell responses following SARS-CoV-2 mRNA vaccination in 101 

participants stratified by cancer therapy treatment from the VOICE study, alongside controls 102 

without cancer.  103 

 104 

Methods 105 

Patient material and ELISpot assay Peripheral blood mononuclear cell (PBMC) samples were 106 

obtained from participants enrolled in the previously published VOICE trial17,18, a prospective, 107 

multi-center clinical study evaluating mRNA-1273 vaccine responses in patients with cancer and  108 

controls ClinicalTrials.gov, NCT04715438. In total, 791 individuals without prior SARS-CoV-2 109 

infection were enrolled across four cohorts: controls without cancer (CTRL, n = 247), patients 110 

treated with immune checkpoint inhibitors (IT, n = 137), patients receiving chemotherapy (CT, n 111 

= 244), and those treated with a combination of chemotherapy and immunotherapy (CT/IT, n = 112 

163). PBMCs were collected at baseline (prior to vaccination) and at multiple time points following 113 

the second vaccine dose (28 days, 6, 11, 12, and 18 months). This study utilized cryopreserved 114 

PBMCs from that biorepository. In particular, we analyzed samples from baseline (T0) and 28 days 115 

post-vaccination (T2), selecting a subset of participants with high-quality ELISpot images and 116 

complete metadata. Cohort demographics are summarized in Table 1. 117 

ELISpot assays were performed as previously described. Briefly, MultiScreen HTS IP filter plates 118 

(Millipore, MSIPS4510) were ethanol-activated and coated overnight at 4°C with anti-human IFNγ 119 

antibody (Mabtech, 3420-3-250, 5 μg/mL). After blocking with X-VIVO medium supplemented 120 

with 2% human serum for 1 hour at 37°C, thawed PBMCs were incubated in the same medium 121 

for 60 minutes. A total of 2×10⁵ PBMCs were stimulated in triplicate for 20-24 hours at 37°C with 122 
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two separate peptide pools covering the SARS-CoV-2 spike protein and the CMV-pp65 protein 123 

(JPT, 0.5 μg/peptide/mL). DMSO and phytohemagglutinin (PHA, 2 μg/mL) served as negative and 124 

positive controls, respectively. Plates were developed using biotinylated anti-IFNγ detection 125 

antibody (1:1000, diluted, Mabtech, 3420-6-250), streptavidin poly-HRP (Sanquin, M2051), and 126 

TMB substrate (Mabtech, 3651-10). 127 

ELISpot Image Acquisition and Preprocessing The resulting well images from the ELISpot reader 128 

(AID iSpot) were exported and used for this analysis, as illustrated in Figure 1. Raw color images 129 

were processed using CellProfiler22 (version 4.2.6; Broad Institute) with a custom image analysis 130 

pipeline provided in the Supplementary Material. In brief, images were converted from color to 131 

grayscale, and pixel intensities were rescaled to the range of 0 to -1. Wells were identified as 132 

primary objects using the three-class Otsu thresholding method with the “assign foreground” 133 

option. Within each well, cytokine spots were segmented using a separate two-class Otsu 134 

threshold. For each well, multiple quantitative features were extracted, including spot count, 135 

mean and integrated intensity values for both spots and the entire well, mean and total spot area, 136 

and the proportion of the well area occupied by signal (well occupancy). All processed images and 137 

corresponding binary masks were saved, and extracted features were exported to spreadsheets 138 

for downstream analysis. 139 

Feature Analysis and Scoring To evaluate and compare ELISpot well reactivity across conditions, 140 

we developed five scoring systems based on image-derived features extracted from CellProfiler. 141 

All subsequent analyses were conducted in R (version 4.5.1)23. Six quantitative variables were 142 

selected for this purpose: spot count per well (C), percent of well area occupied (O), mean spot 143 

intensity (Is), mean spot area (A), integrated well intensity (Iw), and a background penalty term 144 

derived from well-level intensity (B). All missing or non-finite values were set to zero to penalize 145 

poor-quality wells. A reference “proxy” score was constructed by z-scoring four key features 146 

(occupancy, spot intensity, spot area, and background penalty) and averaging them per well. This 147 

composite proxy served as the optimization target for evaluating score performance using 148 

Spearman correlation.  149 
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The first scoring system, Emphasize Well Occupancy, is a composite formula that includes all six 150 

features and applies tunable weights to key variables and more weight to well occupancy. It is 151 

defined as: 152 

Emphasize Well Occupancy = log(1+C) ⋅ Oα ⋅ Is
β ⋅ Aδ  ÷ Bγ 153 

The exponents α, β, γ, and δ were optimized through a grid search to maximize correlation with 154 

the proxy score, allowing emphasis to be placed on specific aspects, such as occupancy or 155 

intensity, depending on data quality. The Emphasize Well Occupancy score was designed to 156 

prioritize well occupancy features in particular. During grid search optimization, we intentionally 157 

favored parameter combinations that up-weighted occupancy (O) and down-weighted 158 

background penalty (B), while allowing moderate influence from spot-level features such as 159 

intensity and area. This score is particularly suited for wells where spatial coverage and total signal 160 

footprint are more informative than discrete spot counts, such as in highly reactive or confluent 161 

wells. 162 

The second scoring system, Equal Weights, retains the same structure but applies equal weighting 163 

to all components, thereby offering a balanced metric: 164 

Equal Weights =log(1+C) ⋅ O ⋅ Is ⋅A ÷ B 165 

A third system, Optimized Weights, was generated by independently re-performing the grid 166 

search to find a distinct set of optimal exponents, potentially capturing an alternative balance of 167 

signal features. 168 

Optimized Weights = log(1+C) ⋅ Oα ⋅ Is
β ⋅ Aδ  ÷ Bγ 169 

In contrast to the Emphasize Well Occupancy score, the Optimized Weights score was generated 170 

through a separate, fully data-driven optimization. No constraints were placed on which features 171 

should be emphasized. Instead, the goal was to maximize Spearman correlation with a composite 172 

proxy score constructed from normalized feature values. Interestingly, this unconstrained 173 

optimization consistently assigned a low weight to spot count (C), suggesting that in our dataset, 174 

spot count alone was a weaker predictor of overall well signal compared to occupancy, intensity, 175 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 24, 2025. ; https://doi.org/10.1101/2025.08.21.25334174doi: medRxiv preprint 

https://doi.org/10.1101/2025.08.21.25334174


8 
 

or spot morphology. As a result, Optimized Weights reflects an empirical model that down-176 

weights spot enumeration in favor of features more aligned with well-level activity. 177 

In addition to these comprehensive scoring methods, we also defined two simplified metrics. The 178 

Well Occupancy and Intensity score captures broad well-level activation by multiplying occupancy 179 

with well intensity. This score omits spot-level features entirely and focuses on total well 180 

engagement. 181 

Well Occupancy and Intensity = O ⋅ Iw 182 

Lastly, the Well Occupancy score uses occupancy alone as a minimal, baseline metric. This single-183 

feature score offers interpretability and computational simplicity while reflecting an 184 

immunological signal in many contexts. 185 

Well Occupancy = O 186 

Figure 2 visually compares the scoring outcomes, highlighting how each metric ranks well in 187 

reactivity through a heatmap and representative well images.  188 

Data Aggregation and Normalization Scores were aggregated at the individual, antigen, and time 189 

point levels. For each patient tagged with a unique VoiceID, technical replicates were averaged 190 

to generate a single value per condition. DMSO control well scores were subtracted from antigen-191 

stimulated wells to correct for background signal. Spike-specific responses were measured using 192 

two overlapping peptide pools, targeting S1 and S2 regions of the protein. These were averaged 193 

to yield a single composite spike score per time point, consistent with the well-based scoring 194 

approach. 195 

Statistical Analyses and Plotting All statistical analyses and visualizations were performed using 196 

R. Comparative analyses included changes in spike-specific responses at baseline (T0) and 28 days 197 

after vaccination (T2), changes in CMV-specific responses between timepoints, associations 198 

between immune response and age, and the relationship between CMV-specific reactivity and 199 

changes in spike-specific responses. Paired comparisons were assessed using Wilcoxon signed-200 

rank tests. Correlation analyses were conducted using Spearman’s rank method. All plots and 201 
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statistical results are presented in the figures, with detailed p-values and correlation coefficients 202 

included in the respective figure legends. 203 

Pipeline and Code Availability The CMVision pipeline and related code generated in this work can 204 

be found at https://github.com/d-bhatt/CMVision.  205 
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Table 1: Demographics and clinical characteristics of patients involved in the study. 206 

Variable Statistic Value 

Age 
Mean ± SD 61.7 ± 11.4 

Range 19 – 87 

Gender 
Female 234 (48%) 

Male 254 (52%) 

Tumor stage 

Stage-I 10 (2%) 

Stage-II 28 (5.7%) 

Stage-III 57 (11.7%) 

Stage-IV 226 (46.3%) 

NA 167 (34.2%) 

Cohort 

Chemotherapy (CT) 141 (28.9%) 

Chemotherapy and Immunotherapy (CT/IT) 94 (19.3%) 

Healthy (CTRL) 166 (34%) 

Immunotherapy (IT) 87 (17.8%) 

VoiceID Unique Ids 488 

Primary tumor localisation 

Bone, Articular cartilage and Soft tissues 2 (0.4%) 

Breast 51 (10.5%) 

Central nervous system 6 (1.2%) 

Digestive tract 46 (9.4%) 

Endocrine glands 2 (0.4%) 

Female genital organs 10 (2%) 

Head and neck 4 (0.8%) 

Male genital organs 11 (2.3%) 

Other/unspecified sites 1 (0.2%) 

Respiratory tract 117 (24%) 

Skin 44 (9%) 

Urinary tract 28 (5.7%) 

NA 166 (34%) 

  207 
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Results 208 

Development and validation of the CMVision scoring pipeline  209 

We first developed and validated CMVision, a computational pipeline for automated ELISpot 210 

image analysis and scoring (Figure 1A). The pipeline processed over 18,000 well images obtained 211 

from ELISpot assays using PBMCs from cancer patients and healthy controls. Using CellProfiler, 212 

we extracted multiple biologically meaningful features per well, including spot count, spot size, 213 

spot intensity, integrated well intensity, and percentage of well area occupied by signal. These 214 

features were combined using multiple scoring systems designed to enhance interpretability and 215 

accuracy of immunological quantification, particularly in wells with high spot overlap or variable 216 

morphology. The pipeline successfully identified wells and their constituent spots across a wide 217 

range of well intensities and morphologies, including low-responding, sparse wells and highly 218 

confluent or saturated wells (Figure 1B). 219 

 220 

 221 

ELISPOT Wells

(n= 18144)

Image analysis

Extracted features:

• Spots per well

• % Occupancy

• Spot size

• Spot intensity

• Well intensity

Score calculation

Scoring based on:

• All features, emphasizing well occupancy

• All features, equal weights

• All features, optimized weight to reduce effect of spot count

• Only considering well occupancy and intensity

• Only considering well occupancy

I2W81 I2W48 I2W39I2W8

Example wells

Image preprocessing

Identification: Wells

Identification: Spots/Well

Original image
A B

CellProfiler
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Figure 1: Overview of the CMVision pipeline for ELISpot image analysis and composite scoring. (A) The 222 

workflow includes image acquisition, feature extraction, and generation of multiple scoring systems to 223 

quantify T-cell responses, with feature extraction processed via CellProfiler. We used 18,144 images, with 224 

a well per image, taken from a 96 well plate. From over 100 features, we selected the most biologically 225 

meaningful ones: spots per well, % well occupancy (area covered by all spots in a well), spot size, mean 226 

spot intensity, and integrated well intensity. These features were further processed to calculate 5 different 227 

combined scores, either using all or selected features. (B) Example wells that were processed and analyzed 228 

using the pipeline, illustrating the accuracy of identifying respective wells and spots per well for the 229 

analysis.  230 

 231 

Visualization and performance of feature-based scores 232 

To evaluate the discriminative power of the scores and features, we visualized 40 representative 233 

wells ranked by each score and individual feature (Figure 2A). We found that all composite scores 234 

generally ranked high-responding wells similarly, especially the Optimized Weights, Equal 235 

Weights, and Emphasize Well Occupancy scores. The simpler Well Occupancy score, however, 236 

sometimes failed to prioritize wells with high intensity due to its lack of intensity weighting. In 237 

contrast, rankings based on individual features such as spot count or mean spot intensity were 238 

inconsistent. For instance, some high-responding wells with dense and bright signals received low 239 

rankings under the spot count metric, reflecting how high-density wells can appear under-240 

counted due to overlapping spots. 241 

This finding was supported by a heatmap of 18,144 wells, ranked by the Optimized Weights score 242 

(Figure 2B). We chose this score because it consistently captured wells with strong biological 243 

responses across diverse conditions, balancing multiple features such as intensity, spot count, 244 

and occupancy. The heatmap shows strong concordance among the three composite scores, 245 

while the individual features displayed variable alignment, with spot count often showing poor 246 

association with well reactivity. Percent occupancy and well intensity are strongly associated with 247 

composite score ranking. 248 
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 249 

 250 

Figure 2: Comparative ranking, distribution, and correlation of ELISpot features and composite scores. 251 

(A) Representative images from 40 wells, illustrating well morphology and spot distribution across different 252 

scores and features, ranked accordingly. (B) Heatmap displaying normalized data from 18,144 wells, 253 

including features and scores, ordered by the Optimized Weights score. The wells are scored on a scale of 254 

0 (low) to 1 (high) for each respective feature and score. (C) Correlation matrix depicting pairwise 255 

relationships between ELISpot scores and individual features across all wells. Spearman correlation 256 
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coefficients are shown to highlight feature interdependencies. Blank entries indicate non-significant 257 

correlation (p-value > 0.05). 258 

 259 

Inter-feature and inter-score correlations 260 

A correlation matrix between all features and composite scores (Figure 2C) revealed strong 261 

correlations between the composite scoring systems (Spearman’s ρ > 0.8), indicating that the 262 

scores are internally consistent despite differences in construction. Among the individual 263 

features, percent occupancy showed the strongest correlation with the composite scores, while 264 

spot count and mean spot intensity showed the weakest correlation. These results validate our 265 

scoring approach and highlight the limitations of relying solely on spot enumeration in high-266 

throughput T-cell analysis. 267 

 268 

Spike-specific T-cell responses increase after vaccination across all patient groups 269 

Using the Optimized Weights score, we next evaluated vaccine-induced T-cell responses to SARS-270 

CoV-2 spike antigen across therapy groups by including samples from participants with high-271 

quality ELISpot data and complete metadata, as described in Table 1. Spike-specific responses 272 

significantly increased from baseline (T0) to two weeks post-boost (T2) across all patient cohorts 273 

(Figure 3A), including those treated with chemotherapy, immunotherapy, or both. The magnitude 274 

of response varied slightly across treatment groups, but did not abrogate the vaccine-induced T-275 

cell response, as previously observed in our earlier study17. Robust spike-specific responses were 276 

observed across all age groups and cohorts, with no significant correlation with age (p-value 277 

>0.05). However, in the group receiving immunotherapy, these responses exhibited a weak 278 

inverse correlation with age (Figure 3C).  279 

 280 

CMV-specific T-cell responses are stable and therapy-independent 281 

Next, we assessed whether CMV-specific T-cell responses changed post-vaccination or differed 282 

across cohorts. CMV responses showed no significant changes between T0 and T2 (Figure 3B). In 283 
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the group receiving chemotherapy, there was a small yet significant increase in the CMV-specific 284 

responses post-vaccination, which may reflect low-level activation of CMV memory or 285 

chemotherapy-induced immune turnover. Overall, these results suggest the CMV-specific 286 

memory T-cell responses remain stable and are not significantly impacted by mRNA vaccination 287 

or cancer treatment. Unlike spike responses, CMV reactivity did not show age-dependent changes 288 

(Figure 3D), suggesting that CMV memory may be maintained even in older and 289 

immunocompromised individuals, as indicated in literature. 290 

 291 

CMV-specific reactivity correlates with vaccine-induced spike T-cell response 292 

Finally, we tested whether the strength of CMV-specific reactivity correlated with spike-specific 293 

vaccine responsiveness, measured as the change in spike-specific responses (T2-T0). As shown in 294 

Figure 3D, a significant positive correlation was observed between CMV and spike-specific vaccine 295 

responsiveness, particularly in patients treated with immunotherapy. This suggests that 296 

individuals with stronger CMV memory may possess a more "fit" T-cell compartment capable of 297 

mounting stronger responses to novel antigens. However, this correlation was attenuated in 298 

patients who received chemotherapy, with or without immunotherapy, possibly reflecting 299 

broader T-cell dysfunction in these groups. 300 

 301 

Variation in vaccine responses is associated with cancer therapy and CMV-specific reactivity 302 

The coefficient of variation (CV) for change in spike-specific responses (T2–T0) was highest in the 303 

cohort receiving chemotherapy or both chemo- and immunotherapy (Figure 3F). This indicated a 304 

greater inter-individual heterogeneity in vaccine-induced T-cell expansion among patients 305 

receiving chemotherapy. In contrast, only immunotherapy-treated patients and  controls 306 

displayed lower CV values, suggesting more consistent responses in these groups. When stratified 307 

by CMV-specific response quartiles, individuals in the lowest quartile showed greater variability 308 

in spike responses, whereas those in the highest CMV quartile exhibited lower variability. This 309 

pattern could reflect that individuals capable of mounting strong CMV responses also tend to 310 
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generate more consistent spike-specific memory responses. Age quartiles showed non-linear and 311 

irregular differences in CV compared to therapy or CMV quartiles, indicating that chronological 312 

age alone may be less influential on response variability than immune history or treatment 313 

exposure in this cohort. 314 

 315 
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Figure 3: T-cell responses in  patients with cancer and controls, controls zijn niet healthy following SARS-318 

CoV-2 mRNA vaccination. (A) Spike-specific T-cell responses stratified by cancer therapy cohorts at baseline 319 

(T0) and post-vaccination (T2). (B) CMV-specific T-cell responses stratified by cancer therapy cohorts at T0 320 

and T2. (C) Correlation between spike-specific responses at T0 and T2 and patient age. (D) Correlation 321 

between CMV-specific responses at T0 and T2 and patient age. (E) Correlation between spike-specific 322 

response change (T2–T0) and CMV-specific responses at T0 and T2. (F) Variation in spike-specific response 323 

change (T2–T0) with respect to patient age, CMV-specific response, or therapy cohort. Paired statistical 324 

analyses were used to compare responses between T0 and T2. In panels (C–E), correlation coefficients and 325 

corresponding p-values are indicated. Statistical significance was defined as p < 0.05 and denoted as 326 

follows: * = p < .05, ** = p < .01, *** = p < .001. In panel (F), the coefficient of variation was calculated as 327 

the ratio of the standard deviation to the mean. Patients were divided into quartiles (Q1–Q4) based on age 328 

or the magnitude of CMV-specific response. Cohort abbreviations based on cancer therapy: CT = 329 

chemotherapy, CTRL =  control  (no cancer), IT = Immunotherapy, CT/IT = Chemotherapy and 330 

Immunotherapy. 331 

 332 

Discussion 333 

In this study, we developed and applied CMVision, a robust, open-source ELISpot image analysis 334 

pipeline that integrates multiple image-derived metrics to provide more comprehensive and 335 

nuanced quantification of T-cell responses. By combining well occupancy, spot morphology, and 336 

intensity features into composite scores, we propose an approach that surpasses traditional spot 337 

count–based methods, which often fail in wells with overlapping or faint spots, particularly in 338 

immunocompromised samples. Using this pipeline, we analyzed spike-specific and CMV-specific 339 

T-cell responses in cancer patients and healthy controls from the VOICE study, offering new 340 

insight into how chronic viral memory, particularly CMV, relates to vaccine-induced immunity. 341 

Conventional ELISpot quantification relies heavily on counting discrete spot-forming units, which 342 

may underestimate responses in confluent or high-density wells. Our composite scoring approach 343 

revealed that spot count often poorly correlates with other biologically meaningful features, such 344 

as well occupancy or signal intensity. These results are consistent with recent work emphasizing 345 

the need for improved ELISpot quantification tools using machine learning or advanced image 346 
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analysis19–21. However, existing tools generally focus on count optimization and rarely integrate 347 

well-level intensity or spatial metrics. CMVision addresses this gap, providing a scalable method 348 

for multidimensional ELISpot scoring.  349 

Our findings show that mRNA vaccination induces robust spike-specific T-cell responses in 350 

patients during various systemic cancer therapy histories, including chemotherapy, 351 

immunotherapy, or chemo-immunotherapy. This is consistent with earlier VOICE study results 352 

using conventional spot counts17,18, and extends these findings by demonstrating similar trends 353 

using a feature-integrated scoring approach. Importantly, our results support the view that even 354 

immunocompromised patients, such as those recently treated with cytotoxic therapies, can 355 

mount meaningful cellular response to SARS-CoV-2 vaccination. Age correlated inversely but 356 

weakly and often non-significantly with spike-specific responses, aligning with reports of 357 

immunosenescence in elderly individuals8,9. 358 

Overall, the CMV-specific T-cell responses remained remarkably stable over time and across 359 

therapy groups, except for patients treated with chemotherapy, where a slight increase was 360 

observed. This aligns with previous observations that CMV memory is long-lived and largely 361 

unaffected by acute immune perturbations12,14. Despite substantial immune remodeling induced 362 

by cancer or its treatment, CMV reactivity persisted, suggesting a resilient memory T-cell 363 

compartment. Interestingly, our data showed no significant age-related decline in CMV 364 

responses, contrasting with some studies reporting reduced CMV-specific functionality in the 365 

elderly9–11. This discrepancy could be due to differences in sample sizes, but may also reflect our 366 

use of an integrated scoring method that captures residual functional activity better than spot 367 

counts alone. 368 

One of the most notable findings from our study is the significant correlation between CMV-369 

specific T-cell responses and the increase in spike-specific responses following vaccination, 370 

particularly in  individuals without cancer and patients treated with immunotherapy. This 371 

suggests that CMV reactivity may serve as a marker of immunological "fitness," reflecting an 372 

individual’s capacity to respond to novel antigens. Our results support the idea that persistent 373 

CMV exposure may bolster heterologous immunity in some contexts, as previously reported for 374 
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influenza8,12,14. Importantly, most of these studies dichotomized participants into CMV-375 

seropositive and CMV-seronegative groups. This binary classification likely masks the underlying 376 

gradient of CMV-specific immunity, which may vary substantially even among seropositive 377 

individuals. By directly measuring CMV-specific T-cell responses and using continuous scoring, we 378 

were able to uncover associations that would be obscured by serostatus alone. Our findings, 379 

therefore, help reconcile conflicting reports by showing that it is not merely CMV exposure (i.e., 380 

seropositivity), but the magnitude of CMV-specific memory that predicts vaccine responsiveness. 381 

Interestingly, we observed that this correlation between CMV and spike responses was weakened 382 

in patients treated with chemotherapy, suggesting that chemotherapy-induced alterations to the 383 

T-cell pool may disrupt the beneficial effects of CMV memory. Recent studies have shown that 384 

systemic therapies, particularly those used in hematologic malignancies and solid tumors, can 385 

induce long-lasting disruptions to T-cell compartments, including loss of naive and memory T-cell 386 

diversity, changes in TCR clonality, and a shift toward dysfunctional or exhausted states. For 387 

example, long-term survivors of multiple myeloma exhibit sustained immune alterations, 388 

including skewed T-cell phenotypes and reduced repertoire diversity, even decades after 389 

completing first-line therapy24. Similarly, acquired resistance to targeted therapies in melanoma 390 

has been shown to create an immune-evasive tumor microenvironment that confers cross-391 

resistance to immunotherapy, reflecting broader dysfunction in immune cell engagement and 392 

persistence25. These findings underscore the need to interpret CMV’s immunomodulatory effects 393 

within the context of cancer therapy exposure, as therapeutic history may shape not only the 394 

composition but also the functional potential of the T-cell pool. In line with this, our coefficient 395 

of variation analysis revealed that chemotherapy-treated cohorts exhibited the greatest 396 

heterogeneity in vaccine-induced spike responses. In contrast, immunotherapy-treated patients 397 

and controls without cancer showed more consistent responses. Furthermore, individuals with 398 

lower CMV-specific responses tended to have higher variability in spike responses, while those 399 

with higher CMV responses showed more uniform outcomes. This relationship could indicate that 400 

stronger CMV memory stabilizes the magnitude of recall responses, or that individuals are 401 

inherently better at generating memory responses and perform well for both CMV and spike 402 

antigens. 403 
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Our study thus highlights the potential of CMV-specific T-cell reactivity as a biomarker of vaccine 404 

readiness, especially in immunocompromised populations. The association between CMV 405 

memory and heterologous responses may reflect shared survival niches, cross-reactivity, or low-406 

level stimulation of innate immune pathways via persistent inflammation8,13. However, it may 407 

also signal immune over-activation or exhaustion in some contexts. Thus, future studies should 408 

assess not just the quantity but the quality and phenotype of CMV-specific T-cells, such as their 409 

cytokine production, expression of exhaustion markers, and subset composition (e.g., CD8+ 410 

TEMRA cells). 411 

Importantly, our approach provides a scalable framework for integrating image-based 412 

immunometrics into large immunological studies. The open-source nature of CMVision enables 413 

broader application across vaccine trials, aging studies, and immune monitoring programs. Given 414 

that ELISpot is widely used in clinical immunology, improving its accuracy and resolution can have 415 

significant translational value. 416 
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